Advanced Analog Integrated Circuits

Layout

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Design & Production Flow

- 1. Specifications
- 2. Feasibility & Architecture
- 3. Circuit Design
- 4. Layout (DRC)
- 5. Extraction
- 6. Verification
 - Layout versus schematics (LVS)
 - Layout parasitic extraction
 (LPE) → SPICE

- 7. Fabrication
 - metal dummies ...
- 8. Characterization
- 9. Production wafer-level test
- 10. Packaging
- 11. Packaged die test

Layout Considerations

- Design rules
- Floor plan
- Components
- Matching
- Interference

... and their interactions!

Advanced Analog Integrated Circuits

Design Rules

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Metal Rules

- Metal density rules
 - CMP \rightarrow abrasion differences of oxide and metal lead to topology
 - Avoid dummy metal fill
 - Be careful with "exclusion"
 - results in metal thickness uniformity
 - increases mismatch
 - Wide metal rule, e.g. <10μm
- Electromigration: ~1mA/μm
- Maximum (fixed) contact size \rightarrow arrays

Antenna Rules

- Load (poly) gate not protected by diffusion diode before M2 deposition
- Charging (during M1 reactive ion etch) can lead to gate breakdown
- Solution: limit metal/gate poly area ratio

https://en.wikipedia.org/wiki/Antenna_effect

Advanced Analog Integrated Circuits

Floor Plan

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Chip Microphotograph

B. Murmann and
B. E. Boser,
"A 12 b 75
Msample/s
Pipelined ADC
Using Open
Loop Residue
Amplification,"
ISSCC 2003.

Floor Planning

- Plan overall structure before laying out cells
 - Pin locations
 - Power and ground
 - Keep sensitive inputs away from other signals, clocks
 - Area estimates
 - Organization
 - Cell placements
 - Power distribution
 - Wiring channels
 - Choice of package
 - Size
 - Length, orientation and inductance of bond-wires
- Common mistake
 - Great job laying out lots of small cells
 - Big mess connecting them

PCB Layout

- Power distribution
 - Decoupling
 - Supply
 - Ground planes
 - Many good references, e.g.
 - Maxim Tutorial 5450: Successful PCB Grounding with Mixed-Signal Chips - Follow the Path of Least Impedance <u>https://www.maximintegrated.com/en/design/design-</u> technology/ground-layout-board-designers.html
- Interconnects to other chips
- Co-design evaluation board with ASIC

On-Chip Power Routing

Gregorian & Temes, p. 515

Which is preferable?

Supply Noise

- Typical sources
 - Digital logic
 - Clocks
 - IO pads
- Preventive measures
 - Isolate in space & time
 - On-chip decoupling
 - LVDS I/O
 - Avoid oversizing digital buffers
 - Exacerbates supply noise

Decoupling Network

Figure 13: Motorola (ISSCC'02) use of decoupling capacitance to decrease noise.

http://www.commsdesign.com/showArticle.jhtml?articleID=192200561

LVDS Outputs

- Well defined current return path
- 2 pins per signal

Ref: ADI application note 586

Reference Distribution

- Typically use single band-gap for entire chip
- How distribute to cells?
 - a) Bias voltage
 - b) Current

IR Drops

- Metal sheet resistance:
 50 ... 100 mΩ/□
- $10\Box \rightarrow \sim 1\Omega \text{ or } 1\text{mV/mA}$
- Use large V*
 - Costs headroom
 - Know most important constraint: dynamic range or matching?

Advanced Analog Integrated Circuits

Components

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

"Parasitics" (sample values)

Layer	Value	T _c ppm/K	V _c ppm/V
Resistance			
n+ diff (no salicide)	50 Ω/□	600	200
p+ diff (no salicide)	80 Ω/□	600	200
n-well	2 kΩ/□	4000	8,000
poly (no salicide)	30 Ω/□	500	100
poly (salicide)	7 Ω/□	200	50
metal 1-4	80 mΩ/□		
metal 5	20 mΩ/□		
Capacitance			
neighboring metals	0.8 fF/µm ²		

Advanced Analog Integrated Circuits

Matching

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Layout for Matching

- 1. Unit elements
 - E.g. equal W and L (use arrays for ratios)
- 2. Large area
 - Reduces random variations
 - But more susceptible to gradients
 - Beware of increased parasitics
 - Is speed or matching more important?
 - E.g. RF versus ADC
- 3. Defensive biasing
 - Voltage matching (differential pair): low V*, long L
 - Current matching (mirror): large V*, same V_{DS}

- 4. Same orientation
 - MOSFETs are nominally symmetrical
 - Actual devices are not
 - Si is not isotropic
 - Implants are not exactly isotropic

- 5. Compact layout
 - Minimize temperature and stress variations
 - Tradeoff with random variations
 - Avoid large aspect ratios
 - E.g. W/L = 180µm/180nm
 - Use fingers \rightarrow ~ square layout
- 6. Same vicinity
 - Use dummy elements at edge of array
 - Protects from process non-uniformity, e.g. etch rate
 - Match all layers (including metal)

[Su and Murmann]

- 7. Stress and proximity effects
 - Package stress
 - Place devices in areas of low stress (typically center of die)
 - At odds with mixed-signal floor plans
 - Local
 - Mostly caused by metal
 - Avoid routing M1 across active area
- 8. Junctions
 - Keep junction edges (e.g. well) away from transistors (except S/D)
 - At least 2x junction depth
 - Just because DRC rules permit it, minimum spacing is not always best
 - Not all spaces are critical for overall die size

- 9. Oxide thickness
 - Devices with thinner oxide usually exhibit less mismatch
 - Use minimum oxide thickness, if choice (low voltage devices)
- 10. Temperature gradients
 - Sources of power dissipation (> ~50mV) result in local heating

$$- \quad \frac{dV_{TH}}{dT} \cong -2 \text{ mV/K}$$

- Keep matched devices away from hot spots
- Beware of "Temperature memory effect" (thermal τ usually > 1/f_s)
- 11. Common centroid layout
 - See following slides

Process Gradients

- Parameter variations
 across wafer
- Typically small, well approximated by linear gradient, at least for devices in close proximity
- Caused by processing artefacts, e.g. etchant concentration higher near the edge

Example: Diff Pair Common Centroid Layout

 Linear gradients
 "average out" in common-centroid layout

Common Centroid Layout 1

- Lots of possibilities
 - "Common-centroid" in horizontal
 and vertical direction, should be
 double good?
- Not really:
 - Imbalanced wiring around transistors
 - Mismatched gate parasitics
 - G₂₄ overlaps source, G₁₃ does not

Ref: M. Pelgrom et al, "A designer's view on mismatch," Chapter 13 in Nyquist A/D Converters, Sensors, and Robustness, Springer 2012, pp. 245-67.

Common Centroid Layout 2

Ref: M. Pelgrom et al, "A designer's view on mismatch," Chapter 13 in Nyquist A/D Converters, Sensors, and Robustness, Springer 2012, pp. 245-67.

- A better option
- Asymmetry at the drains
 pull D₁₃ farther away from G₂₄?
- Beware of what is to the left and right
 - place dummies as needed

Common Centroid Layout Principles

- 1. Coincidence:
 - Center of all matched devices coincide
- 2. Symmetry:
 - X- and Y-axis
 - R's and C's exhibit 1-axis symmetry
- 3. Dispersion:
 - High dispersion reduces sensitivity to higher order (nonlinear) gradients
 - E.g.
 - ABBAABBA: 2 runs (ABBA) of 2 segments (AB, BA)
 - ABABBABA: 1 run of 2 segments (AB, BA)
 - \rightarrow ABABBABA has higher dispersion (preferable)

Common Centroid Layout Principles (cont.)

- 4. Compactness:
 - Approximately square layout
 - 2D patterns
 - Better approximation of square layout
 - Usually higher dispersion possible, e.g.

 $_{\mathsf{D}}\mathsf{A}_{\mathsf{S}}\mathsf{B}_{\mathsf{D}}$ $_{\mathsf{D}}\mathsf{B}_{\mathsf{S}}\mathsf{A}_{\mathsf{D}}$

- 5. Orientation:
 - Stress induced mobility variations: several percent error
 - Tilted wafers: ~5% error

Advanced Analog Integrated Circuits

Interference

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Coupling Mechanisms

- Interconnects
 - Mostly capacitive
 - Mitigation:
 - Distance
 - Shielding (constant potential in-between, e.g. supply or fixed control)
 - Isolation in time (sample at "quiet" moment)
- Package
 - Bondwires
- Supply
- Substrate

Package

- (Mutual) inductance
- $\Delta V \sim {^{dI}}/_{dt}$
 - Beware of fast transients
 - Test at low temperature (and fast corner wafers)
- Measures:
 - Differential circuits (LVDS IO)
 - Orthogonal bondwires
 - Choose package and pad layout that minimizes length of critical bond wires (supplies and fast signals)

Power Supply

- Separate zones
- Regulator
 - Beware: low output impedance only at low frequencies!
- Decoupling capacitors
 - Key: low impedance (to load)
 - Close
 - Low area return path
 - Choose full equivalent model in simulations
 - Fast and right size is better than big and slow

Capacitive Coupling - Bias

- Can use decoupling capacitors to reduce the amplitude of noise coupling into bias nodes
- If noise is "deterministic" and occurs at a "don't care" point in time, you
 might be better off not decoupling, but making the bias node "fast" (small
 mirror ratio, no decoupling cap) so it can recover quickly
- Must go for either extreme case: no decoupling or large decoupling

Capacitive Coupling – SC Circuit

- Must minimize coupling into charge conservation node
 - Proper placement of "bottom plate" parasitics
 - Substrate shielding

Substrate Types

Epitaxial Substrate

<u>Note:</u> Lack of backside wafer contact substantially increases coupling!

D. K. Su, M. J. Loinaz, S. Masui, and B. A. Wooley, "Experimental results and modeling techniques for substrate noise in mixed-signal integrated circuits," *IEEE Journal of Solid-State Circuits,* vol. 28, pp. 420 - 430, April 1993.

Waveforms

Current flow in Epi-Substrate

- Majority of current flows in low-resistivity wafer
- Coupling is very weak function of distance

Cross-Talk versus Distance

Guard Rings

Model for Guard Ring

Shared guard ring contact reduces isolation!

Backside Contact

Noise versus Backside Contact Inductance

Summary for Epi-Substrate

- Substrate closely modeled by "single equipotential node"
- Most effective approach to minimize coupling"
 - Low resistance and inductance backside contact
- Guard rings
 - Limited effect
 - Beware of "telephone effect"
 - Use dedicated guard ring potential

Current in High Resistivity Substrate

Strongly affected by surface potential

Suggests guard ring should be effective

Guard Rings

Peak-to-Peak Noise (mV)

Example

Figure 7: Ericsson single-chip Bluetooth design with a 300micron-wide, guard band isolation.

http://www.commsdesign.com/showArticle.jhtml?articleID=192200561

Deep N-Well

Figure 3: Motorola (ISSCC'02) triple-well example showing approximately 20 dB of additional isolation. The top curve is with no triple well or guard ring. The middle curve shows the isolation added by a guard ring, while the bottom curve is the triple-well isolation.

http://www.commsdesign.com/showArticle.jhtml?articleID=192200561

Summary for Lightly Doped Substrate

- Distance and guard rings reduce coupling significantly
- But beware of injecting noise through guard rings

Selected References

- R. Gharpurey and R. G. Meyer, "Modeling and analysis of substrate coupling in integrated circuits," *IEEE Journal of Solid-State Circuits,* vol. 31, pp. 344 - 353, March 1996.
- Balsha R. Stanisic, Nishath Verghese, Rob A. Rutenbar, L. Richard Carley, David J. Allstot; *Addressing substrate coupling in mixed-mode ICs: Simulation and power distribution synthesis*, IEEE Journal of Solid-State Circuits, vol. 29, pp. 226 238, March 1994.
- Kuntal Joardar; A simple approach to modeling cross-talk in integrated circuits, IEEE Journal of Solid-State Circuits, vol. 29, pp. 1212 1219, October 1994.
- Nishath Verghese, David J. Allstot; Computer-aided design considerations for mixedsignal coupling in RF integrated circuits, IEEE Journal of Solid-State Circuits, vol. 33, pp. 314 - 323, March 1998.
- A. Samavedam, A. Sadate, K. Mayaram, and T. S. Fiez, "A scalable substrate noise coupling model for design of mixed-signal IC's," *IEEE Journal of Solid-State Circuits,* vol. 35, pp. 895 - 904, June 2000.
- Tallis Blalack et al., "On-Chip RF-Isolation Techniques," <u>http://www.commsdesign.com/showArticle.jhtml?articleID=192200561</u>